Construção de fotocatalisadores heteroestruturados de Cs2AgBiBr6/bismuteno e sua aplicação para produção de combustíveis solares a partir da redução fotocatalítica de CO2

Photocatalytic CO2 reduction is a process that uses light energy and photocatalysts to convert CO2 molecules into solar fuels such as H2 and CH4, which are considered promising energy sources due to their high energy density and potential for storage. This process can help address the challenges...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Sena, Michael Segundo
Outros Autores: Moriyama, André Luís Lopes
Formato: doctoralThesis
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/53522
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Photocatalytic CO2 reduction is a process that uses light energy and photocatalysts to convert CO2 molecules into solar fuels such as H2 and CH4, which are considered promising energy sources due to their high energy density and potential for storage. This process can help address the challenges of sustainable energy production and environmental protection by reducing greenhouse gas emissions as well as providing a way of storing renewable energy. Lead-free halide perovskites have recently been explored as promising materials for photocatalytic CO2 reduction as they offer a safer alternative to traditional lead-based halide perovskites and have shown encouraging results in photocatalysis. Among them, Cs2AgBiBr6 is a double perovskite that stands out as a remarkable alternative due to its non-toxicity, excellent optoelectronic properties and multifunctionality. However, the application of Cs2AgBiBr6 is limited by its low efficiency of separation of photogenerated charges. In this respect, this work reports the synthesis and characterization of Cs2AgBiBr6/bismuthene composites through a selfassembly process of Cs2AgBiBr6 nanoparticles on two-dimensional bismuthene nanosheets with improved photocatalytic activity for CO2 reduction. The optimized Cs2AgBiBr6/bismuthene nanocomposites show a photocatalytic activity of 14,79 (±1,66) μmol g–1h–1 on an electron basis with 1 sun, with a CH4 selectivity of 81 (±1) %. The improved photocatalytic performance is attributed to their improved charge mobility and suppressed electron–hole pares recombination, along with extended light absorption capacity promoted by the heterojunction of bismuthene with the perovskite.