Corrosão e refusão superficial à laser de ligas Sn-Ag-Cu

The study, selection and feasibility of non-toxic alloys for soldering electronic microcomponents are urgent and necessary demands in a context of accelerated technological advancement and Industry 4.0. Alternative lead-free solder alloys such as Sn-Ag-Cu (SAC) system alloys have stood out for th...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Xavier, Amanda Rávilla Valério
Outros Autores: Silva, Bismarck Luiz
Formato: Dissertação
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/52289
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:The study, selection and feasibility of non-toxic alloys for soldering electronic microcomponents are urgent and necessary demands in a context of accelerated technological advancement and Industry 4.0. Alternative lead-free solder alloys such as Sn-Ag-Cu (SAC) system alloys have stood out for this application, as they have good wettability on metallic substrates, high creep strength and melting temperature close to the eutectic Sn-37wt.%Pb alloy, traditionally used in these situations. Laser surface treatments result in significant microstructural changes, but studies for Sn-based alloys are scarce in the literature. In this sense, the present research aims to understand the microstructural characteristics and the respective hardness of the Sn-1wt.%Ag0.7wt.%Cu (SAC107) and Sn-3wt.%Ag-0.7wt.%Cu (SAC307) alloys treated by Laser Surface Remelting (LSR). The corrosion resistances of the as-cast samples of SAC107 and SAC307 alloys have also been analyzed. In order to understand the solidification paths of the alloys, such as solidification interval and transformation temperatures, thermodynamic calculations were performed via the Thermo-Calc software. Microstructural characterization was performed using optical microscopy (OM), scanning electron microscopy (SEM) and the Electron Backscatter Diffraction (EBSD) technique. The corrosion tests were made possible by potentiodynamic polarization, in addition to the Vickers microhardness tests. The increase in Ag content slightly reduced the liquidus temperature (TL), not changing the solidus (TS) and eutectic (TE) temperatures. As-cast microstructures are composed of Sn-rich dendrites surrounded by a ternary eutectic mixture β-Sn+Ag3Sn+Cu6Sn5. An epitaxial growth has been observed at the base of the Laser remelted pools, as well as a significant microstructure refinement in relation to the microstructural scale of the substrate (as-cast), of 98.5% and 99.4%, for the SAC107 and SAC307 alloys, respectively, associated at cooling rates of the order of 102 °C/s. Microhardness increases of 64.35% and 67.35% were noted for SAC107 and SAC307 alloys, respectively, from coarse microstructures to refined microstructures obtained by Laser. The polarization curves showed a more active behavior of samples with coarser microstructures for both SAC alloys. SAC307 alloy exhibited greater corrosion resistance than SAC107 alloy.