Estudo sobre a substituição de armadura metálica por barras de fibra de vidro em seções de vigas de concreto armado submetidas à flexão

One of the challenges in civil construction is the application of new materials and techniques to the detriment of conventional techniques and materials. Reinforced concrete is one of the main materials used in civil construction, having a consolidated normative base. Research involving composite ma...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Andrade, Everton de Lima de
Outros Autores: Costa, José Airton Cunha
Formato: bachelorThesis
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/50321
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:One of the challenges in civil construction is the application of new materials and techniques to the detriment of conventional techniques and materials. Reinforced concrete is one of the main materials used in civil construction, having a consolidated normative base. Research involving composite materials in this sector is increasing, however the inclusion of technical guidelines in standards is not common in some countries. Glass Fiber Reinforced Polymer (GFRP) has been used for over 30 years as an alternative to steel in reinforced concrete in countries such as Russia, the United States of America, Canada, Italy and France. All of them have norms for this use. In Brazil there is no official technical recommendation for the use of this composite. Therefore, this paper aims to evaluate the effect of replacing CA-50 steel by GFRP in reinforced concrete sections subjected to simple bending, its implication on load capacity, and its financial influence. Two sensitivity analyzes were carried out, carrying capacity analysis and cost analysis. The first sensitivity analysis was performed for steel sections, 45 cases, with steel area and concrete compressive strength factors. The second for sections with GFRP, with 90 cases and their variation factors were fiber area, concrete strength and environmental conditions factor ( ). The results obtained showed that the areas of the bars, whether steel or fiberglass, were the most influential factors. In addition, the GFRP sections withstood greater efforts, supporting up to approximately three times more than steel sections. The environmental conditions factor did not show great influence. The cost analysis showed that the costs of fiber bars are equivalent to those of steel bars and the cost per load capacity guarantees greater savings for beams with GFRP.