Avaliação in silico da afinidade de drogas ao receptor TRPA1 como preditor para o manejo farmacológico da sensibilidade provocada pelo clareamento dentário

Introduction: Reducing in-office tooth bleaching sensitivity represents a challenge for professionals. Researchers have associated the block of the pain receptor TRPA1 with reducing bleaching sensitivity. However, the chemical affinity of analgesic/antiinflammatory drugs to the TRPA1 needs to be v...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Costa, Moan Jéfter Fernandes
Outros Autores: Borges, Boniek Castillo Dutra
Formato: doctoralThesis
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/49191
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Introduction: Reducing in-office tooth bleaching sensitivity represents a challenge for professionals. Researchers have associated the block of the pain receptor TRPA1 with reducing bleaching sensitivity. However, the chemical affinity of analgesic/antiinflammatory drugs to the TRPA1 needs to be verified. Objective: To perform a virtual screening of multiple drugs (analgesic and anti-inflammatory drugs) to verify chemical affinity for the TRPA1 receptor. Methodology: The crystal structure of the TRPA1 receptor proteins was retrieved from the Protein Data Bank. The SMILES codes of the ligands were extracted from PubChem. The binding energy of the complex was obtained in ∆G - kcal/mol by AutoDock Vina© and replicated in the webservers SwissDock©, Dockthor©, and CbDock©. LigPlus© confirmed the binding sites. Results: Although the receptor antagonists analyzed showed high affinity, codeine and dexamethasone showed regularity among all servers, even showing binding energy values of -7.9 kcal/mol for codeine and -8.1 kcal/mol for dexamethasone. Conclusion: Codeine and dexamethasone may be potential drugs to manage tooth bleaching sensitivity if they reach the dental pulp TRPA1 receptor.