Produção de hidrogênio verde ambientalmente sustentável

In the coming years, a very significant worldwide growth (approximately 50% by 2050) in energy and water consumption is expected. The increasingly search for renewable energy sources is one of the pillars to achieve the decarbonization process. Given this scenario, hydrogen gas has been attractin...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Paiva, Suelya da Silva Mendonça de
অন্যান্য লেখক: Santos, Elisama Vieira dos
বিন্যাস: Dissertação
ভাষা:pt_BR
প্রকাশিত: Universidade Federal do Rio Grande do Norte
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://repositorio.ufrn.br/handle/123456789/47548
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
id ri-123456789-47548
record_format dspace
institution Repositório Institucional
collection RI - UFRN
language pt_BR
topic Energia renovável
Eletroquímica
Hidrogênio verde
spellingShingle Energia renovável
Eletroquímica
Hidrogênio verde
Paiva, Suelya da Silva Mendonça de
Produção de hidrogênio verde ambientalmente sustentável
description In the coming years, a very significant worldwide growth (approximately 50% by 2050) in energy and water consumption is expected. The increasingly search for renewable energy sources is one of the pillars to achieve the decarbonization process. Given this scenario, hydrogen gas has been attracting great interest in the industrial and academic environment, as it is considered a clean fuel that has the ability to play an important role in the energy transition, achieving a future with zero emissions of polluting gases, due to its wide industrial application and for being used as an instrument for energy storage. Hydrogen gas can be produced by the electrolysis of water (breaking down of the water molecule under an electric current), forming products (O2(g)) that do not harm the environment, unlike processes that are based on fossil fuels. Contamination of water bodies by gas station accidents and inappropriate releases of effluents from the petrochemical industry is a widely known problem. The presence of aromatic hydrocarbons such as benzene, toluene and xylene (BTXs) in the environment requires close attention due to their toxic character and carcinogenic potential of these compounds. In order to solve these problems, numerous effluent treatments have been carried out, as a large number of aromatic compounds have high stability and resistance to conventional treatments. Thus, advanced electrochemical oxidative processes (POAE) have been studied in order to become an alternative way of treating wastewater, being characterized by the in situ production of hydroxyl radicals (•OH) as the main oxidant, but not the main oxidant exclusive. Among the advantages of this technology, there is the possibility of recovering energy during the process by capturing H2(g), which is produced at the cathode during the oxidation of pollutants at the anode. Therefore, the present work aimed to apply the POAE technology, for the degradation of recalcitrant compounds such as BTX, with simultaneous production of H2(g) integrated into solar panels. The experiments were carried out in a flow reactor with a mass transfer coefficient of 5.11*10-5 (m/s), under three electric current densities (15, 45 and 60 mA/cm²) for 180min, so that pollutant degradation and simultaneously the production of H2(g) were observed. The degradation of aromatic compounds via electrochemical oxidation was monitored by means of absorbance analysis, gas chromatography, COD and TOC. The results showed that all aromatic compounds reached zero concentration under the three electric current densities. At 60 mA/cm², the highest degradation rate was achieved, mainly for the o-xylene compound (being completely removed in less than 60min) and to a lesser extent for benzene (in less than 90min). It was also observed that at high current density, higher is the production of H2(g), with a rate of 6.45, 5.10 and 0.57 ml/min, for benzene under current density of 60, 45 and 15mA/cm², respectively.
author2 Santos, Elisama Vieira dos
author_facet Santos, Elisama Vieira dos
Paiva, Suelya da Silva Mendonça de
format masterThesis
author Paiva, Suelya da Silva Mendonça de
author_sort Paiva, Suelya da Silva Mendonça de
title Produção de hidrogênio verde ambientalmente sustentável
title_short Produção de hidrogênio verde ambientalmente sustentável
title_full Produção de hidrogênio verde ambientalmente sustentável
title_fullStr Produção de hidrogênio verde ambientalmente sustentável
title_full_unstemmed Produção de hidrogênio verde ambientalmente sustentável
title_sort produção de hidrogênio verde ambientalmente sustentável
publisher Universidade Federal do Rio Grande do Norte
publishDate 2022
url https://repositorio.ufrn.br/handle/123456789/47548
work_keys_str_mv AT paivasuelyadasilvamendoncade producaodehidrogenioverdeambientalmentesustentavel
AT paivasuelyadasilvamendoncade environmentallysustainablegreenhydrogenproduction
_version_ 1773965025461927936
spelling ri-123456789-475482022-06-06T19:48:09Z Produção de hidrogênio verde ambientalmente sustentável Environmentally sustainable green hydrogen production Paiva, Suelya da Silva Mendonça de Santos, Elisama Vieira dos http://lattes.cnpq.br/5280028188695268 https://orcid.org/0000-0003-2189-5694 http://lattes.cnpq.br/8117747568545202 Barros Neto, Eduardo Lins de http://lattes.cnpq.br/2811639726261017 Huitle, Carlos Alberto Martinez Solano, Aline Maria Sales Araújo, Danyelle Medeiros de Energia renovável Eletroquímica Hidrogênio verde In the coming years, a very significant worldwide growth (approximately 50% by 2050) in energy and water consumption is expected. The increasingly search for renewable energy sources is one of the pillars to achieve the decarbonization process. Given this scenario, hydrogen gas has been attracting great interest in the industrial and academic environment, as it is considered a clean fuel that has the ability to play an important role in the energy transition, achieving a future with zero emissions of polluting gases, due to its wide industrial application and for being used as an instrument for energy storage. Hydrogen gas can be produced by the electrolysis of water (breaking down of the water molecule under an electric current), forming products (O2(g)) that do not harm the environment, unlike processes that are based on fossil fuels. Contamination of water bodies by gas station accidents and inappropriate releases of effluents from the petrochemical industry is a widely known problem. The presence of aromatic hydrocarbons such as benzene, toluene and xylene (BTXs) in the environment requires close attention due to their toxic character and carcinogenic potential of these compounds. In order to solve these problems, numerous effluent treatments have been carried out, as a large number of aromatic compounds have high stability and resistance to conventional treatments. Thus, advanced electrochemical oxidative processes (POAE) have been studied in order to become an alternative way of treating wastewater, being characterized by the in situ production of hydroxyl radicals (•OH) as the main oxidant, but not the main oxidant exclusive. Among the advantages of this technology, there is the possibility of recovering energy during the process by capturing H2(g), which is produced at the cathode during the oxidation of pollutants at the anode. Therefore, the present work aimed to apply the POAE technology, for the degradation of recalcitrant compounds such as BTX, with simultaneous production of H2(g) integrated into solar panels. The experiments were carried out in a flow reactor with a mass transfer coefficient of 5.11*10-5 (m/s), under three electric current densities (15, 45 and 60 mA/cm²) for 180min, so that pollutant degradation and simultaneously the production of H2(g) were observed. The degradation of aromatic compounds via electrochemical oxidation was monitored by means of absorbance analysis, gas chromatography, COD and TOC. The results showed that all aromatic compounds reached zero concentration under the three electric current densities. At 60 mA/cm², the highest degradation rate was achieved, mainly for the o-xylene compound (being completely removed in less than 60min) and to a lesser extent for benzene (in less than 90min). It was also observed that at high current density, higher is the production of H2(g), with a rate of 6.45, 5.10 and 0.57 ml/min, for benzene under current density of 60, 45 and 15mA/cm², respectively. Nos próximos anos, espera-se um crescimento mundial bastante significativo (aproximadamente 50% até 2050) no consumo de energia e água. A busca cada vez mais por fontes de energias renováveis é um dos pilares para se alcançar o processo de descarbonização. Diante desse cenário, o gás hidrogênio vem atraindo grandes interesses no meio industrial e acadêmico, por ser considerado um combustível limpo que possui a capacidade de desempenhar um papel importante na transição energética, alcançando um futuro com zero emissões de gases poluentes, devido a sua ampla aplicação industrial e por ser empregado como instrumento para armazenamento de energia. O gás hidrogênio pode ser produzido pela eletrólise da água (quebra da molécula de água sob uma corrente elétrica), formando produtos (O2(g)) que não agridem ao meio ambiente, diferente dos processos que tem como base os combustíveis fósseis. A contaminação de corpos hídricos por acidentes de postos de gasolina e lançamentos inapropriados de efluentes da indústria petroquímica, é um problema amplamente conhecido. A presença dos hidrocarbonetos aromáticos como o benzeno, tolueno e xileno (BTXs) no meio ambiente, exige bastante atenção devido ao seu caráter tóxico e um potencial cancerígeno desses compostos. Visando solucionar esses problemas, inúmeros tratamentos de efluentes vem sendo realizados, pois um grande número de compostos aromáticos possui uma elevada estabilidade e resistência aos tratamentos convencionais. Dessa forma, os processos oxidativos avançados eletroquímicos (POAE) vem sendo estudados a fim de que se tornem uma via alternativa de tratamento de águas residuárias, sendo caracterizado pela produção in situ de radicais hidroxilas (•OH) como o principal oxidante, mas não o exclusivo. Dentre as vantagens dessa tecnologia, tem-se a possibilidade de recuperação de energia durante o processo através da captura de H2(g), que é produzido no cátodo durante a oxidação dos poluentes no ânodo. Diante disso, o presente trabalho teve como objetivo aplicar a tecnologia POAE, para degradação de compostos recalcitrantes como o BTX, com produção simultânea de H2(g) integrada a placas solares. Os experimentos foram realizados no reator em fluxo com um coeficiente de transferência de massa de 5,11*10-5 (m/s), sob três densidades de corrente elétrica (15, 45 e 60 mA/cm²) durante 180min, para que fosse observado a degradação do poluente e simultaneamente a produção de H2(g). A degradação dos compostos aromáticos via oxidação eletroquímica, foi acompanhada por meio da análise de absorbância, cromatografia gasosa, DQO e COT. Os resultados mostraram que todos os compostos aromáticos atingiram uma concentração zero sob as três densidades de corrente elétrica. Em 60 mA/cm², foi alcançado a maior taxa de degradação, principalmente para o composto o – xileno (sendo removido completamente em menos de 60min) e em menor intensidade para o benzeno (em menos de 90min). Também foi observado que em elevadas densidade de corrente, maior é a produção de H2(g), com uma taxa de 6.45, 5.10 e 0.57 ml/min, para o benzeno sob a densidade de corrente de 60, 45 e 15mA/cm², respectivamente. 2022-06-06T19:47:16Z 2022-06-06T19:47:16Z 2022-02-14 masterThesis PAIVA, Suelya da Silva Mendonça de. Produção de hidrogênio verde ambientalmente sustentável. 2022. 111f. Dissertação (Mestrado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022. https://repositorio.ufrn.br/handle/123456789/47548 pt_BR Acesso Aberto application/pdf Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA