Influência do método de síntese nas propriedades fotocatalíticas e fotoluminescentes do Ca1-xInxWO4

CaWO4 is a semiconductor that is currently being investigated for having good optical properties. These properties are related to some processing factors such as different synthesis methods that generate distinct crystal structures and morphologies. Such morphological and structural characteristi...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Nunes, Theresa Beatriz Oliveira
Outros Autores: Motta, Fabiana Villela da
Formato: Dissertação
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/47516
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:CaWO4 is a semiconductor that is currently being investigated for having good optical properties. These properties are related to some processing factors such as different synthesis methods that generate distinct crystal structures and morphologies. Such morphological and structural characteristics will certainly affect the properties of the synthesized material. In this work, the photocatalytic and photoluminescent properties of CaWO4 doped with indium (0, 1, 2, 4 and 8% mol) were investigated for 30 minutes by two different methods: the sonochemical method (MS) and the microwave-assisted hydrothermal method (MHAM). The crystal structures of the pure and doped samples and their morphologies were characterized by X-ray diffraction (XRD) and by field emission scanning electron microscopy (MEV-FEG), respectively. The photocatalytic activity was estimated from the degradation of methylene blue (MB) dye under UV light. CaWO4 powders were tested in 3 cycles of reuse. Optical and photoluminescence properties were estimated from UV-Visible spectroscopy and the photoluminescence (FL) test. The diffractograms indicated no formation of secondary phases and the Rietveld refinement estimated the crystallite sizes where the samples synthesized by MS obtained a crystallite size of 31,85 nm for the pure sample which varied to 31,23 nm with a maximum doping (8% of In). For the samples synthesized by MHAM, the crystallite size varied between 35,98 nm for the pure sample and 36,73 nm for the 8% In sample. The average crystallite sizes of MS and MHAM samples were 33.51 and 34.69 nm, respectively. The SEM-FEG images indicated a clustered morphology with an irregular shape and in the form of rods and kibes. The photocatalytic activity increased in efficiency with increasing doping, and the samples doped with 4 and 8% of indium in each synthesis were the samples that showed the best photocatalytic efficiencies and the lowest bandgaps values. The sample synthesized by the hydrothermal method showed the smallest loss of efficiency during the 3 cycles of reuse, being the best alternative for applications in photocatalysis. The samples with 8% of In+3 ions showed lower FL intensities with maximum peak at 479 and 483 nm suggesting that there is a lower recombination pair e-/h+, which led these samples to have a better photocatalytic performance.