Photoluminescent properties of Sm3+ and Tb3+ codoped CaWO4 nanoparticles obtained by a one‐step sonochemical method

Luminescent materials with LED applications can have your emission color controlled by rare earth doping. In this work, Sm3+- and Tb3+-codoped CaWO4 nanoparticles were obtained by a one-step sonochemical method. The nanoparticles were characterized by X-ray difractogram (XRD), Raman scattering (RS)...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Principais autores: Andrade Neto, Nivaldo Freire de, Silva, J. M. P., Tranquilin, Ricardo Luis, Silva, Elson Longo da, Domenegueti, J. F. M., Delmonte, Maurício Roberto Bomio, Motta, Fabiana Villela da
Formato: article
Idioma:English
Publicado em: Springer Science and Business Media LLC
Assuntos:
Endereço do item:https://repositorio.ufrn.br/handle/123456789/41560
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Luminescent materials with LED applications can have your emission color controlled by rare earth doping. In this work, Sm3+- and Tb3+-codoped CaWO4 nanoparticles were obtained by a one-step sonochemical method. The nanoparticles were characterized by X-ray difractogram (XRD), Raman scattering (RS) spectroscopy, The Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and visible ultraviolet spectroscopy (UV–Vis). The photoluminescent measurements were taken at room and lower temperatures for analysis of doping in emission color. The difractograms indicate the single-phase CaWO4 with the scheelite structure and it was observed a reduction in the crystallite size as the doping. SEM and TEM images indicate the formation of nanospheres for pure and samarium-doped samples, while terbium doping results in the formation of nanorods. Room temperature photoluminescence spectra indicate a blue emission for the bare and samarium-doped CaWO4, while terbium doping emits at the green color. The codoping mixes the colors blue, green, and orange, indicating a potential material with white color emission