Acoplamento efático em modelo neuronal híbrido

There is growing interest in the impact of electrical fields generated in the brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable of affecting nearby neurons, a phenomenon called ephatic communication. In the present work, the Quadratic Integrate-...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cunha, Gabriel Moreno
Άλλοι συγγραφείς: Lima, Gustavo Zampier dos Santos
Μορφή: Dissertação
Γλώσσα:pt_BR
Έκδοση: Universidade Federal do Rio Grande do Norte
Θέματα:
Διαθέσιμο Online:https://repositorio.ufrn.br/handle/123456789/33329
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
id ri-123456789-33329
record_format dspace
institution Repositório Institucional
collection RI - UFRN
language pt_BR
topic Acoplamento efático
Comunicações neuronais
Modelos neuronais
spellingShingle Acoplamento efático
Comunicações neuronais
Modelos neuronais
Cunha, Gabriel Moreno
Acoplamento efático em modelo neuronal híbrido
description There is growing interest in the impact of electrical fields generated in the brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable of affecting nearby neurons, a phenomenon called ephatic communication. In the present work, the Quadratic Integrate-and-Fire model was adapted to include the ephatic coupling behavior and its results were compared to the empirical results. Therefore, the analysis tools were divided according to the neuronal activity regime. For the subthreshold regime, circular statistics were used to describe the phase differences between the stimulus signal and the modeled membrane response; In the suprathreshold regime, the Population Vector and Spike Field Coherence were used to estimate phase preferences and the coupling intensity between the stimulus and the spikes of the model. The subthreshold phase difference was sensitive to the characteristic membrane response time, as well as the frequency of the stimulus given to the model. On the other hand, the intensity of the coupling between spikes and stimulus was sensitive to the intensity of noise added to the stimulus signal and also to the stimulus frequency. The preferential phase of spikes are sensitive, according to the model, only to the stimulus frequency. Such results are consistent with the results observed in empirical experiments on ephatic neuronal coupling. It was observed that the Quadratic Integrate-e-Fire model with ephatic coupling is able to successfully model this neuronal communication. Thus, the model makes it possible to pursue further studies on the physiological importance of ephatic coupling in the brain, including significant implications for our understanding of brain processing for neuroscience.
author2 Lima, Gustavo Zampier dos Santos
author_facet Lima, Gustavo Zampier dos Santos
Cunha, Gabriel Moreno
format masterThesis
author Cunha, Gabriel Moreno
author_sort Cunha, Gabriel Moreno
title Acoplamento efático em modelo neuronal híbrido
title_short Acoplamento efático em modelo neuronal híbrido
title_full Acoplamento efático em modelo neuronal híbrido
title_fullStr Acoplamento efático em modelo neuronal híbrido
title_full_unstemmed Acoplamento efático em modelo neuronal híbrido
title_sort acoplamento efático em modelo neuronal híbrido
publisher Universidade Federal do Rio Grande do Norte
publishDate 2021
url https://repositorio.ufrn.br/handle/123456789/33329
work_keys_str_mv AT cunhagabrielmoreno acoplamentoefaticoemmodeloneuronalhibrido
_version_ 1773965322795089920
spelling ri-123456789-333292022-05-02T15:42:13Z Acoplamento efático em modelo neuronal híbrido Cunha, Gabriel Moreno Lima, Gustavo Zampier dos Santos http://lattes.cnpq.br/3949069933473689 http://lattes.cnpq.br/6484225572798302 Corso, Gilberto 36990485000 http://lattes.cnpq.br/0274040885278760 Mohan, Madras Viswanathan Gandhi http://lattes.cnpq.br/1995273890709490 Lima, Marcelo de Meira Santos http://lattes.cnpq.br/5011624798550816 Lopes, Sergio R. Acoplamento efático Comunicações neuronais Modelos neuronais There is growing interest in the impact of electrical fields generated in the brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable of affecting nearby neurons, a phenomenon called ephatic communication. In the present work, the Quadratic Integrate-and-Fire model was adapted to include the ephatic coupling behavior and its results were compared to the empirical results. Therefore, the analysis tools were divided according to the neuronal activity regime. For the subthreshold regime, circular statistics were used to describe the phase differences between the stimulus signal and the modeled membrane response; In the suprathreshold regime, the Population Vector and Spike Field Coherence were used to estimate phase preferences and the coupling intensity between the stimulus and the spikes of the model. The subthreshold phase difference was sensitive to the characteristic membrane response time, as well as the frequency of the stimulus given to the model. On the other hand, the intensity of the coupling between spikes and stimulus was sensitive to the intensity of noise added to the stimulus signal and also to the stimulus frequency. The preferential phase of spikes are sensitive, according to the model, only to the stimulus frequency. Such results are consistent with the results observed in empirical experiments on ephatic neuronal coupling. It was observed that the Quadratic Integrate-e-Fire model with ephatic coupling is able to successfully model this neuronal communication. Thus, the model makes it possible to pursue further studies on the physiological importance of ephatic coupling in the brain, including significant implications for our understanding of brain processing for neuroscience. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Existe um crescente interesse no impacto dos campos elétricos gerados no cérebro. As correntes iônicas transmembranas originam campos elétricos no espaço extracelular e são capazes de afetar neurônios próximos, fenômeno chamado de comunicação efática. No presente trabalho, o modelo Integra-e-Dispara Quadrático foi adaptado para incluir o comportamento de acoplamento efático e seus resultados foram comparados aos resultados empíricos. Para tanto, as ferramentas de análise foram divididas de acordo com o regime de atividade neuronal. Para o regime sublimiar, a estatística circular foi utilizada para descrever as diferenças de fase entre o sinal de estímulo e a resposta da membrana modelada; No regime supralimiar, o Vetor de População e o Spike Field Coherence foram utilizados para estimar preferências de fase e a intensidade do acoplamento entre o estímulo e os Potenciais de Ação do modelo. A diferença de fase sublimiar se mostrou sensível ao tempo característico de resposta da membrana, assim como a frequência do estímulo dado ao modelo. Por outro lado, a intensidade do acoplamento entre Potenciais de Ação e estímulo, se mostrou sensível a intensidade do ruído adicionado no sinal de estímulo e também a frequência de estímulo. Já a fase preferencial dos Potenciais de Ação são sensíveis, segundo o modelo, apenas a frequência de estímulo. Tais resultados são condizentes com os resultados observados em experimentos empíricos de acoplamento efático neuronal. Observou-se que o modelo Integra-e-Dispara Quadrático com acoplamento efático é capaz de modelar com sucesso esta comunicação neuronal. Assim, o modelo possibilita a busca de novos estudos sobre a importância fisiológica do acoplamento efático no cérebro, incluindo implicações significativas em nossa compreensão do processamento cerebral para a neurociência. 2021-09-09T22:10:21Z 2021-09-09T22:10:21Z 2021-07-26 masterThesis CUNHA, Gabriel Moreno. Acoplamento efático em modelo neuronal híbrido. 2021. 152f. Dissertação (Mestrado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2021. https://repositorio.ufrn.br/handle/123456789/33329 pt_BR Acesso Aberto application/pdf Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA