Análise energética dos fármacos Zanamivir e Oseltamivir associados a neuraminidase selvagem e com mutação HIS274TIR

Influenza A (H1N1) is an acute and contagious respiratory disease. Its strain was approved in early 2009, and was less than half the causes of pandemics in humans. The virus infection mechanism provides the medium for the two surface glycoproteins, a hemagglutinin and a neuraminidase. A hemagglut...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Souza, Mylene Radmila de Oliveira
Outros Autores: Fulco, Umberto Laino
Formato: Dissertação
Idioma:pt_BR
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
DFT
Endereço do item:https://repositorio.ufrn.br/handle/123456789/31727
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Influenza A (H1N1) is an acute and contagious respiratory disease. Its strain was approved in early 2009, and was less than half the causes of pandemics in humans. The virus infection mechanism provides the medium for the two surface glycoproteins, a hemagglutinin and a neuraminidase. A hemagglutinin binds to sialic acid receptors, inducing the incorporation of viral envelope by the cell and an age of neuraminidase cleaving sialic acid from cellular receptors. This mechanism prevents viral clustering and, therefore, has become an important target for antiviral drugs. Currently, Oseltamivir and Zanamivir are the agents of choice for the treatment and prophylaxis of influenza because they have advantages over other drugs, however, cases of resistance to them have already been described, which has become a reason for concern for healthcare professionals. Cheers. Such resistance is caused by substitutions of amino acids that are located in the neuraminidase active site, which can influence the affinity and specificity of the binding to the receptor. The replacement of histidine with tyrosine (His274Tir) is the most commonly found. From the crystallographic structures of the chosen proteins (3TI6), (3CL0), (3TI5) and (3CKZ), the interaction energy of Zanamivir and Oseltamivir co-crystallized with the wild neuraminidase and with the His274Tir mutation was calculated using techniques models of molecular modeling, based on the Functional Density Theory (DFT) approach associated with the Molecular Fractionation Method with Conjugated Covers (MFCC). The results obtained found that the residues with the most significant energy values residues are located in the neuraminidase active site interacting with the two angonists studied, this fact emphasizes the importance of keeping them preserved in order not to compromise the affinity between them. With this knowledge, it is possible to improve the design of drugs so that they can be more efficient in combating the spread of influenza.