Bandgap oscillation in quasiperiodic (BN)xCy nanotubes

In the present contribution, we apply first-principles calculations to study the effects of quasiperiodic disorder on the physical properties of BN and C nanotubes. We take BN nanotubes (BNNTs) and C nanotubes (CNTs) as building blocks and construct quasiperiodic BNxCy nanotubes according to the Fib...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Principais autores: Freitas, Aliliane Almeida de, Bezerra, Claudionor Gomes, Azevedo, Sérgio, Machado, Leonardo Dantas, Pedreira, Danilo Oliveira
Formato: article
Idioma:English
Publicado em: Elsevier
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/29475
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In the present contribution, we apply first-principles calculations to study the effects of quasiperiodic disorder on the physical properties of BN and C nanotubes. We take BN nanotubes (BNNTs) and C nanotubes (CNTs) as building blocks and construct quasiperiodic BNxCy nanotubes according to the Fibonacci sequence. We studied armchair and zigzag nanotubes of varying diameters. Our results demonstrate that the energy gap oscillates as a function of the n-generation index of the Fibonacci sequence. Moreover, we show that the choice of the BNNTs and CNTs may lead to a quasiperiodic BNxCy nanotube presenting an adjustable energy gap. We obtained a variety of quasiperiodic nanotubes with energy gaps ranging from 0.29 eV to 1.06 eV, which may be of interest for specific technological applications. Finally, it is also demonstrated that the specific heat of the quasiperiodic zigzag and armchair nanotubes presents an oscillatory behavior in the low temperature regime, and that this behavior depends on the curvature of the nanotube