Polissacarídeos sulfatados de macroalgas verdes: correlação com parâmetros ambientais e obtenção de glucogalactanas sulfatadas anticoagulantes

Polysaccharides of seaweeds can have their synthesis, structure and pharmacological properties modified due to changes in environmental factors. But few algae have been analyzed in this light. The green seaweed C. cupressoides var. flabellata Børgesen is an abundant alga in the coast of Rio Grand...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Costa, Mariana Santana Santos Pereira da
Outros Autores: Rocha, Hugo Alexandre de Oliveira
Formato: doctoralThesis
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/25639
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Polysaccharides of seaweeds can have their synthesis, structure and pharmacological properties modified due to changes in environmental factors. But few algae have been analyzed in this light. The green seaweed C. cupressoides var. flabellata Børgesen is an abundant alga in the coast of Rio Grande do Norte and it was already shown that this seaweed collected at the same time in beaches with different degree of salinity synthesized sulfated polysaccharides (PS) with different properties, including anticoagulant activity. Therefore the objective of this study was to obtain and characterize PS of green seaweed of the coast of Rio Grande do Norte evaluating the influence of the collection period and environmental parameters in the chemical composition and anticoagulant activity of PS as well as purify, characterize and evaluate the anticoagulant potential of at least one PS of the seaweed C. cupressoides. Initially, extracts rich in sulfated polysaccharides (ERPS) were obtained by proteolysis followed by precipitation with methanol of the seaweed C. cupressoides collected monthly for one year on the beach in Búzios, Nísia Floresta/RN. It was noted that there were variations in performance of extraction, chemical composition and anticoagulant activity of ERPS C. cupressoides according to the month of collection, with the month of March being the one in which they obtained more anticoagulant potential of ERPS. It is worth noting that this activity was greater than that of Clexane®, a low molecular weight commercial heparin. When analyzing the influence of environmental factors in the collection site in regards to performance, chemical composition and anticoagulant activity it has been observed that there is a significant positive correlation (p < 0.05) between the performance of the extraction of ERPS and salinity of sea water and insolation; for the amount of sulfate it was observed a significant negative correlation (p < 0.05) with the salinity of the seawater. The amount of total sugars had a significant negative correlation (p < 0.05) with: total solids, sodium, chloride and insolation. Since the month of March was the month with ERPS with more anticoagulant potential, it was decided to purify, characterize and evaluate the PS anticoagulant potential extracted on that month. After proteolysis and fractionation with increasing volumes of acetone four fractions of polysaccharide C. cupressoides (CCB-0.3, CCB-0.5, CCB-1.0 e CCB2.0) were obtained. Since the CCB-0.5 had higher anticoagulant activity, it was submitted to a chromatography ion-exchange column and eluted in two new fractions (FI and FII) after agarose gel electrophoresis, slide staining with toluidine blue and discoloration it was observed the appearance of a single band on both SP which indicates the presence of a single population of PS, which allows inferring that these PS were purified. Analysis by high-performance liquid chromatography (HPLC) indicate that SP FI and FII are glucogalactanas. These sulfated glucogalactans exhibited by the intrinsic pathway anticoagulant activity (APTT assay) the extrinsic pathway (PT test) and common pathway (TT test) of the coagulation cascade. An interesting result was that activity in the aPTT test of sulfated glucogalactans was similiar activity of Clexane®. In addition, these PS were able to partially inhibit thrombin. This is an indicative that the PS C. cupressoides may be acting on various proteases of the coagulation cascade. But more studies are needed to explain in detail which are the targets of action of these polymers. Finally, we analyzed the influence of the period of collection and environmental factors in ERPS of other green seaweeds RN coast (Caulerpa prolifera, Caulerpa racemosa var. occidentalis, Caulerpa sertularioides and Codium isthmocladum) also collected monthly for one year on the beach of Búzios, Nísia Floresta/RN; and it was observed that, like the C. cupressoides, there were variations in the performance, chemical composition and anticoagulant activity for ERPs green seaweeds C. prolifera, C. racemosa, C. sertularioides and C. isthmocladum. However, an interesting fact is that each alga responds differently to environmental conditions of the collection site. These data indicate that depending on the time of the year that the algae are collected, the PS extracted from these species of algae may have their chemical structures affected hence its biological activity may be different. These types of studies lead to the clarification of which would be the best conditions to obtain the PS with the structural and biological characteristics of interest, which is essential for the use of these polymers in the industry.