Metagenômica de consórcios microbianos para biorremediação de resíduos de perfuração

Drill cutting is characterized as a waste without adequate treatment, which has been accumulated generating an environmental liability of large proportions Thus, knowledge of the microbial community and its functions in the drilling cutting can be useful for the development of bioremediation strateg...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Guerra, Alaine de Brito
Outros Autores: Agnez, Lucymara Fassarella
Formato: doctoralThesis
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/25242
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Drill cutting is characterized as a waste without adequate treatment, which has been accumulated generating an environmental liability of large proportions Thus, knowledge of the microbial community and its functions in the drilling cutting can be useful for the development of bioremediation strategies. The present work aimed to identify microorganisms from drill cutting by metagenomic approach and obtain bacterial consortia and isolated bacteria that have hydrocarbon biodegradation activity and/or biosurfactant production, for further application in strategies of bioremediation. Total DNA was directly extracted from the drill cutting samples and from two consortia (enriched in different culture media) and sequenced using the Ion Torrent PGM platform. Isolated bacteria from the consortia were identified by 16S partial gene rRNA sequencing by the Sanger method. Taxonomic analysis revealed changes at the phylum level and consequently genera among samples. While in the drilling cutting predominated phylum Proteobacteria and genus Halomonas, in the consortia greater abundance were observed for the phylum Firmicutes and genera Paenibacillus and Brevibacillus. Functional analysis using a specific database for hydrocarbon biodegradation and biosurfactant production (BioSurfDB), revealed that the selection not only maintained routes related to hydrocarbon degradation and biosurfactant production, but also favored some them. Growth curve in the presence of petroleum, qualitative biodegradation test using the DCPIP indicator, microbial adhesion to hydrocarbons assay, emulsification tests, oil spreading Method and interfacial tension indicated capacity of hydrocarbon biodegradation and production of biosurfactants by the consortia and isolated. Returning to the residue to which they were obtained, the consortia selected in Lysogeny broth (LB) e Yeast peptone dextrose (YPD) medium were able to degrade 66 and 30% of n-alkanes, respectively. So, differences in the composition of microorganisms, probably due to the enrichment stage in different media, reflected different metabolic capacities. LB medium has selected microbial community more adequate to the removal of alkanes in the drill cutting. The 16S rRNA sequences obtained from isolated strains presented high identity with representatives of the genera Brevibacillus, Micrococcus, Bacillus. Metagenomics was shown as a powerful tool in the analysis of microbial communities and the choice of bioremediation strategy. Autochthonous bioaugmentation can be an efficient alternative in hydrocarbon biodegradation. Method of enrichment through different medium can affect the composition of the microbial community and degradation ability.