Tratamento de superfície por oxidação à plasma eletrolítico para viabilizar o uso de implantes biomédicos: da Telessaúde para o SUS

Based on the constitutional principles of integrality and equity, it became necessary to enable the incorporation of orthodontic procedures and dental implant by the public health sector. A study carried out by the Ministry of Health verified the reduction in the caries component of 35%, the reducti...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Paiva, Ana Karenina de Oliveira
Outros Autores: Brandão, Glaucio Bezerra
Formato: Dissertação
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/25202
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Based on the constitutional principles of integrality and equity, it became necessary to enable the incorporation of orthodontic procedures and dental implant by the public health sector. A study carried out by the Ministry of Health verified the reduction in the caries component of 35%, the reduction of this index made possible the introduction of these implants in the Unified Health System (Sistema Único de Saúde - SUS). Despite the implementation for a maximum of 6 implants per patient in dental specialty centers, the cost of surface treatment of implants is still high and impacts on the final price for the industry. In order to solve this problem, the surface treatment method of Plasma Electrolytic Oxidation (PEO) was used. They were treated with 18 cylinders of grade II titanium, 3 mm in diameter and 25 mm in length. The treatment time was 1, 8 and 16 minutes. After the treatments, the samples were characterized by X-Ray Fluorescence (FRX), Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Spectroscopy of X-rays and Dispersive Energy (ESD). Afterwards, it was made Atomic Force Microscopy (AFM) to characterize the surface texture. The presence of TiO2 on the surface of the sample was identified by X-Ray Fluorescence in this work. It was verified in the SEM that the coatings exhibit a porous characteristic, presenting an interface well adhered and without presence of empty spaces. In the images of the AFM, it was observed that with the increase of the treatment time there was a greater roughness and increase of the homogeneity of the distribution of the ceramic crystals in the surface. In the wettability tests they presented a lower wetting angle for the samples with PEO treatment with time of 1 and 8 minutes. It is concluded that the Plasma Electrolytic Oxidation technique proved to be effective in the deposition of a ceramic coating, improving the quality of the surface reducing the cost of surface treatment, reducing the final value of the implant for implementation in the SUS.