Efeito da adição de resíduo de scheelita no comportamento técnico-mecânico e reológico de argamassas para engobes cerâmicos

In the last years, the development of new techniques and ceramic products has been increasing in the industrial sector, linked to that, the incorporation of mineral residues in ceramic masses has provided a greater range of raw materials for the ceramist sector. In view of this, this work aims at th...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Carlos, Elione Moura
Outros Autores: Mendes, José Ubiragi de Lima
Formato: doctoralThesis
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/25066
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In the last years, the development of new techniques and ceramic products has been increasing in the industrial sector, linked to that, the incorporation of mineral residues in ceramic masses has provided a greater range of raw materials for the ceramist sector. In view of this, this work aims at the development of mortars for ceramic engobes with addition of scheelite residue, replacing the conventional quartz raw material evaluate its thermal-mechanical and rheological behavior. The formulations of engobes developed in this work are unpublished, and based on experimental procedures established by standards of ceramic coatings In the experimental development, five formulations of ceramic masses were prepared by varying the proportions of the raw materials: scheelite residue, white firing clay, kaolin, white frit, feldspar, zirconium silicate and carboxymethylcellulose (CMC). These materials were sieved in the ABNT 200 mesh mesh and characterized separately by X-ray diffraction (XRD), X-ray fluorescence (FRX), particle size and scanning electron microscopy (SEM) and thermogravimetric (TG) analysis. Then, with variable addition of the raw materials, the formulations were homogenized in ball mill for 60 minutes, the clay components were selected trying to adjust to the rheological properties.Subsequently, aliquots of the formulations for thermogravimetric (TG) and dilatometric analysis were separated. The specimens were prepared in a uniaxial press with a pressure of 25 MPa and sintered in a resistive oven at temperatures of 1050 °C, 1075 °C and 1100 °C, with a 60 minute plateau and a heating rate of 20 °C/min In order to evaluate the physico-mechanical properties, we performed technological tests of linear retraction (RL), water absorption (AA), apparent porosity (PA), apparent density (MEA) and flexural strength (RF) of ceramic bodies. The fracture surface was morphologically characterized by scanning electron microscopy (SEM). The application of the developed slags was carried out by the spraying method and sintering of the single-type type at temperatures of 1100°C, 1150°C and 1200°C, in a natural atmosphere under a 60 minute step and a heating rate of 20°C/min . Correlating the results obtained, the developed slags present the potential of the application of the Scheelite residue as an alternative raw material in replacement of quartz, according to the norm NBR 13817/1997. And the pieces slanted and sintered at 1200°C showed visually satisfactory vitreous phase formation and brightness. The formulations FI and FII were the ones that presented the best optical aspects, being in agreement with the results of the thermal, rheological and mechanical analyzes.