Erythroxylum pungens O. E. shulz: proteômica total e bioprospecção de alcaloides tropânicos

Caatinga biome is exclusive brazilian, marked by semi-arid climate. This biome stands out for the high endemism index and scientific unfamiliarity.To survive in this environment with peculiar edaphoclimatic conditions, plants show evolution of intrinsic mechanisms of external environmental signals p...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Pereira, Gabrielle Macedo
Outros Autores: Giordani, Raquel Brandt
Formato: doctoralThesis
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/24802
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Caatinga biome is exclusive brazilian, marked by semi-arid climate. This biome stands out for the high endemism index and scientific unfamiliarity.To survive in this environment with peculiar edaphoclimatic conditions, plants show evolution of intrinsic mechanisms of external environmental signals perception and their respectives metabolic responses. Among the occurrence genera in Caatinga biome, as bioactive alkaloids source, the Erythroxylum pungens species, which has unexplored potential, is outstanding. Thus, the objective of this work is to investigate total proteome and metabolic fingerprint of E. pungens, together with tropane alkaloids bioprospection with cytotoxic potential. For this, in chapter 1 it was possible to identify, by mass spectrometry, seven known tropane alkaloids; 3-(2-methylbutyryloxy)tropan-6, 7-diol as well as 3-(2-methylbutyryloxy)tropan-6, 7-diol were isolated and characterized by 1D and 2D NMR for the first time. N,N-Dimethyl-1-H-indol-3-ethanamine was isolated and characterized from roots of E. punctures. In addition, it was found that alkaloids isolated from E. pungens, against five cell lines, indicated selective potential of 3-(2-methylbutyryloxy)tropan-6, 7-diol against prostate tumor cells. In chapter 2, it was possible to identify 1746 proteins in the leaves, 1779 in the stem and 1026 in the root of E. pungens. Through the recovery of the GO terms, it was possible to evaluate processes in which these proteins are involved, verifying the same process profile for three organs of E. pungens, with emphasis on biotic, abiotic, chemical stress responses, as well as responses to oxidative stress. Were observed significant proteins levels involved in photosynthesis of E. pungens leaves, photorespiration, as well as many proteins related to stress responses: proteins from 14-3-3 family, peroxidases, catalases, superoxide dismutase and shock proteins, which can also act on protein turnover. Were still identificated five proteins homologous to tropinone reductase, and alkaloid production in all organs suggesting that even under chronic stress conditions, E. pungens maintains the production of these metabolites. In chapter 3, through specimens submission experiment of E. pungens to water stress by irrigation suspension in greenhouse, it was observed that this species invest in the increase of proteins related to the responses to water stress, it significantly increases free proline content in cytosol which functions as an important osmoprotector. Furthermore, maintains alkaloids production that appear to be more related to development stage of the plant than stress condition in which it is inserted. The results of this work seek to contribute to knowledge of E. pungens phytochemistry and physiology, as well as to promote the species and consequently conservation of Caatinga biome.