Funcionalização de nanotubos de carbono e sua imobilização em fibras têxteis de soja para sua potencial aplicação como supercapacitores

In recent years the development of supercapacitors have been searched because of the property of possessing power density greater than conventional batteries. To meet the technological demands of modern society, the creation of energy storage devices, flexible and lightweight laptops, also called fl...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Soares, Maria Augusta Cavalcanti
Outros Autores: Ladchumananandasivam, Rasiah
Formato: Dissertação
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/24553
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In recent years the development of supercapacitors have been searched because of the property of possessing power density greater than conventional batteries. To meet the technological demands of modern society, the creation of energy storage devices, flexible and lightweight laptops, also called flexible supercapacitors are being studied. Carbon nanotubes (CNTs) increment special properties to textile substrates, such as, improving the electrical conductivity and antistatic, increased durability and heat insulation/conductivity and can be applied in various areas, and may act as energy suppliers for Biomedical monitoring devices or implants, military equipment and civil construction. The present work has as main objective in the formation of flexible supercapacitors using a method for preparation and modification of multiwall carbon nanotubes (MWCNT) for subsequent immobilization on soybean protein textile fabric. The first stage of this work corresponds to the formation of functional groups in the structure of MWCNTs for their dispersion in water through the functionalization with different acids (H2SO4 - sulfuric acid and HNO3 - nitric acid), being purified with HCl (hydrochloric acid) and neutralized with NH4OH (ammonium hydroxide). In the second step the material was functionalized with chitosan in order to cationize the MWCNT and potentiate its adsorption in soybean mesh. After establishing the appropriate parameters, different concentrations of MWCNTs (0%, 1.0%, 2.0% and 3.0% under weight of the functionalized material) were analyzed to identify the best result. The characterization techniques used proved that the acid functionalisation process was satisfactory for promoting the openings of the MWCNTs tubes, being identified by Transmission Electron Microscopy (TEM) and for facilitating their solubility in aqueous media observed in accordance with the Spectroscopy of UV-vis absorption, besides decreasing the amount of metallic impurities found in X-ray Fluorescence (XRF).The effect of the functionalization of MWCNTs was confirmed in X-ray Diffraction (XRD) and Raman Spectroscopy. The loss of mass of the material identified by Thermogravimetric Analysis (TG) shows the increase after the functionalization. The process of immobilization of the nanoparticles in the soybean substrate showed characteristic nanofilaments of the assembly of the MWCNTs on the surface of the samples visualized in Scanning Electron Microscopy (SEM), as well as, the electrochemical analyzes determined the formation of supercapacitors with greater specific capacitance of 0.766 mF.cm-2, at a concentration of 3.0%, with favorable textile characteristics.