Simulação numérica do escoamento turbulento em canal composto

Compound channels are characterized by having main channels, wider regions where the fluid flows axially more easily, and narrower regions (gaps) where the fluid is decelerated due to the viscous effects. In order to determine the heat transfer coefficients in these channels it is necessary to un...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Aoyama, Guilherme Keiti
Outros Autores: Souza, Sandi Itamar Schafer de
Formato: Dissertação
Idioma:por
Publicado em: Brasil
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/23691
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Compound channels are characterized by having main channels, wider regions where the fluid flows axially more easily, and narrower regions (gaps) where the fluid is decelerated due to the viscous effects. In order to determine the heat transfer coefficients in these channels it is necessary to understand the behavior of the turbulent flows in them, but this remains a challenge for engineering. These channels have, in addition to axial flow parallel to the channel, a cross flow velocity in the gap region that are associated with large scale structures called coherent structures. Thus, the goal of this work is to compare the effects on the appearance of coherent structures of large scale and its consequences for the flow in dynamic and thermal characteristics. To accomplish this, the same geometry used in the experimental works was applied, which is composed of a rectangular channel with an internal tube of diameter D and it is located at a distance W/D from the lower wall of the channel. The fluid flows axially only on the outside of the tube. In total, five different cases were analyzed, modifying only the W/D ratio (gap distance). To examine the characteristics of the turbulent flow inside this channel, ANSYS CFX13 with SASSST turbulence model was applied. The results showed that the W/D ratio increase also caused an increase in the values of the Thermal Performance Factor. This factor is a relationship between the Nusselt number and the friction factor, and the higher its value, better is the thermal performance of the channel. In relation to the coherent structures, in the channels in which they arise, they have a great influence on the flows, since these structures end up raising the local values of heat transfer and friction coefficients, making this phenomenon indispensable in projects and safety analyzes of equipment with gap.