Obtenção e caracterização de compósito a base de poliuretano de mamona e rejeito de telha visando aplicação como isolante térmico

Studied a composite reject the base tile and castor oil polyurethane, aiming their use as insulation for the consumer market. In the experimental stage the reject tile was ground and sieved at 200 mesh and characterized by fluorescence X-ray (XRF), diffraction X-ray (XRD), scanning electron microsc...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Câmara, José Renato Lima
Outros Autores: Mendes, José Ubiragi de Lima
Formato: Dissertação
Idioma:por
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/20441
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Studied a composite reject the base tile and castor oil polyurethane, aiming their use as insulation for the consumer market. In the experimental stage the reject tile was ground and sieved at 200 mesh and characterized by fluorescence X-ray (XRF), diffraction X-ray (XRD), scanning electron microscopy (SEM) and laser granulometry, to analyze the constituent elements, phases present, defects and grain size. For the manufacture of rigid foam polyurethane pure castor two polymer components A and B were used (40- Respan) in the proportions of 1 part to component A and 1.6 parts of component B. six formulations were developed: FI, FII, FIII, FIV, FV and FVI (0%, 10%, 20%, 30%, 40% and 50% reject tile, respectively) for the manufacture of the composite. The mechanical properties were determined by compression testing and hardness testing Shore A. Thermal properties were determined from test thermal conductivity, specific heat, thermal diffusivity. The technological tests were water absorption, bulk density and porosity of the composite Morphological results showed clusters of closed pores, which may have contributed to the reduction of the mechanical strength and density, especially of IVF formulation. It was noted that increasing the tile waste content in the polyurethane matrix did not change the thermo-physical properties of the material. However, the waste tile contributed to decreasing the amount of polyurethane used in the manufacture of thermal components. The values presented the composite properties (tailings tile + polyurethane) were similar in formulations FIII, FIV and FV. The obtained composite can be applied as an insulator and may contribute to the environmental issues because it is a biodegradable material due to the use of tile as raw material waste and reducing manufacturing costs.