Avaliação do tratamento eletroquímico (direto e indireto) como alternativa de degradação do corante azul de metileno

Textile industry has been a cause of environmental pollution, mainly due to the generation of large volumes of waste containing high organic loading and intense color. In this context, this study evaluated the electrochemical degradation of synthetic effluents from textile industry containing Met...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Pontes, Juliana Patricia Souza Duarte
Altri autori: Huitle, Carlos Alberto Martinez
Natura: doctoralThesis
Lingua:por
Pubblicazione: Universidade Federal do Rio Grande do Norte
Soggetti:
Accesso online:https://repositorio.ufrn.br/jspui/handle/123456789/20224
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Descrizione
Riassunto:Textile industry has been a cause of environmental pollution, mainly due to the generation of large volumes of waste containing high organic loading and intense color. In this context, this study evaluated the electrochemical degradation of synthetic effluents from textile industry containing Methylene Blue (AM) dye, using Ti/IrO2-Ta2O5 and Ti/Pt anodes, by direct and indirect (active chlorine) electrooxidation. We evaluated the influence of applied current density (20, 40 and 60 mA/cm2 ), and the presence of different concentrations of electrolyte (NaCl and Na2SO4), as well as the neutral and alkaline pH media. The electrochemical treatment was conducted in a continuous flow reactor, in which the electrolysis time of the AM 100 ppm was 6 hours. The performance of electrochemical process was evaluated by UV-vis spectrophotometry, chemical oxygen demand (COD) and total organic carbon (TOC). The results showed that with increasing current density, it was possible to obtain 100 % of color removal at Ti/IrO2-Ta2O5 and Ti/Pt electrodes. Regarding the color removal efficiency, increasing the concentration of electrolyte promotes a higher percentage of removal using 0,02 M Na2SO4 and 0,017 M NaCl. Concerning to the aqueous medium, the best color removal results were obtained in alkaline medium using Ti/Pt. In terms of organic matter, 86 % was achieved in neutral pH medium for Ti/Pt; while a 30 % in an alkaline medium. To understand the electrochemical behavior due to the oxygen evolution reaction, polarization curves were registered, determining that the presence of NaCl in the solution favored the production of active chlorine species. The best results in energy consumption and cost were obtained by applying lower current density (20 mA/cm2 ) in 6 hours of electrolysis.