Aplicação da técnica da transformada integral generalizada em escoamentos em canais considerando efeitos magnetohidrodinâmicos

The present study proposes the development of hybrid solutions to the transient Hartmann flow problem with heat transfer of an electrically conducting and newtonian fluid subjected to a constant magnetic field. The Generalized Integral Transform Technique is employed to analyze the influence of H...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Silva, Bruno Nunes Melo da
Outros Autores: Lima, João Alves de
Formato: Dissertação
Idioma:por
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/19291
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:The present study proposes the development of hybrid solutions to the transient Hartmann flow problem with heat transfer of an electrically conducting and newtonian fluid subjected to a constant magnetic field. The Generalized Integral Transform Technique is employed to analyze the influence of Hall and ion-slip effects, as well as the presence of solid particles on flow behavior, which is maintained by a constant or exponential-decaying gradient pressure. A transverse flow normal to the walls can also occurs, so that plates can be both porous. Additionally, a movement of the upper plate in the longitudinal direction can be considered. Here, it is assumed that the magnetic field is constant, being not affected by the flow, so that only an one-way interaction between the flow and the magnetic field is studied. Temperature-dependent transport properties, such as viscosity, thermal and electrical conductivity, can be considered too. Hybrid results are obtained and compared to other numerical results for the velocity and temperature fields of flow and solid particles as function of the main dimensionless governing parameters, namely, Reynolds number, Hartmann number, Hall, Ion-slip and concentration of solid particles. Convergence analyses are carried out for the main potentials in order to illustrate the consistency of the technique (GITT) and its use for purposes of benchmarking in the area of heat and fluid flow.