Estudo da digestão de sedimento de curtume visando a extração do cromo por microemulsão

Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from th...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Melo, Keila Rejane de Oliveira
अन्य लेखक: Dantas, Tereza Neuma de Castro
स्वरूप: doctoralThesis
भाषा:por
प्रकाशित: Universidade Federal do Rio Grande do Norte
विषय:
ऑनलाइन पहुंच:https://repositorio.ufrn.br/jspui/handle/123456789/17692
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विवरण
सारांश:Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from the tanning process, due to its high content in chromium, in this work this sediment was characterized and microemulsion systems were applied for chromium removal. The extraction process consists in the removal of heavy metal ions present in an aqueous feeding solution (acid digestion solution) by a microemulsion system. First three different solid sludge digestion methods were evaluated, being chosen the method with higher digestion capacity. For this digestion method, seeking its optimization, was evaluated the influence of granule size, temperature and digestion time. Experimental results showed that the method proposed by USEPA (Method A) was the most efficient one, being obtained 95.77% of sample digestion. Regarding to the evaluated parameters, the best results were achieved at 95°C, 14 Mesh granule size, and 60 minutes digestion time. For chromium removal, three microemulsion extraction methods were evaluated: Method 1, in a Winsor II region, using as aqueous phase the acid digestion solution; Method 2, in a Winsor IV region, being obtained by the addition of the acid digestion solution to a microemulsion phase, whose aqueous phase is distilled water, until the formation of Winsor II system; and Method 3, in a Winsor III region, consisting in the formation of a Winsor III region using as aqueous phase the acid digestion solution, diluted in NaOH 0.01N. Seeking to optimize the extraction process only Method 1 (Systems I, II, and VIII) and Method 2 (System IX) were evaluated, being chosen points inside the interest regions (studied domains) to study the influence of contact time and pH in the extraction percentiles. The studied systems present the following compositions: System I: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase 2% NaCl solution; System II: Aqueous phase Acid digestion solution with pH adjusted using KOH (pH 3.5); System VIII: Aqueous phase - Acid digestion solution (pH 0.06); and System IX Aqueous phase Distilled water (pH 10.24), the other phases of Systems II, VIII and IX are similar to System I. Method 2 showed to be the more efficient one regarding chromium extraction percentile (up to 96.59% - pH 3.5). Considering that with Method 2 the microemulsion region only appears in the Winsor II region, it was studied Method 3 (System X) for the evaluation and characterization of a triphasic system, seeking to compare with a biphases system. System X is composed by: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase Acid digestion solution diluted with water and with its pH adjusted using 0.01N NaOH solution. The biphasic and triphasic microemulsion systems were analyzed regarding its viscosity, extraction efficiency and drop effective diameter. The experimental results showed that for viscosity studies the obtained values were low for all studied systems, the diameter of the drop is smaller in the Winsor II region, with 15.5 nm, reaching 46.0 nm in Winsor III region, being this difference attributed to variations in system compositions and micelle geometry. In chromium extraction, these points showed similar results, being achieved 99.76% for Winsor II system and 99.62% for Winsor III system. Winsor III system showed to be more efficient due to the obtaining of a icroemulsion with smaller volume, with the possibility to recover the oil phase in excess, and the use of a smaller proportion of surfactant and cosurfactant (C/S)