Otimização do meio de cultura para a produção de quitosanase por metarhizium anisopliae em cultivo descontínuo submerso

In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhi...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Silva Filho, Raimundo Cosme da
Другие авторы: Santos, Everaldo Silvino dos
Формат: doctoralThesis
Язык:por
Опубликовано: Universidade Federal do Rio Grande do Norte
Предметы:
Online-ссылка:https://repositorio.ufrn.br/jspui/handle/123456789/15923
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Итог:In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhizium anisopliae. Runs were carried out using submerged discontinuous cultivation for enzyme production. The results of the Plackett & Burman Design showed that only two factors, chitosan concentration as well as FeSO4 had influence on chitosanolytic activity, while the increase in concentration of other factors not contributed significantly to the quitosanolítica activity. Cultivation medium optimization for enzyme production was carried out using a Composite Central Design, with the most important factors for chitosanolytic activity (chitosan and FeSO4), in accordance with Plackett & Burman Design, and keeping the other nutrients in their minimum values. On this other design, it was taken the highest limit in Plackett & Burman Design as the lowest limit (-1) to FeSO4 factor. The results showed that the enzyme production was favoured by increasing the chitosan concentration and by decreasing FeSO4. Maximum production for chitosanolytic activity was about 70.0 U/L and was reached in only 18 h of fermentation, a result about twenty-eight times greater than a former study using the same microorganism (about 2.5 U/L at 48 h)