Influência do teor e granulometria da calcita e da temperatura de sinterização no desenvolvimento de massas cerâmicas para revestimento poroso(BIII)

This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mec...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Galdino, José Nildo
Outros Autores: Melo, Marcus Antônio de Freitas
Formato: doctoralThesis
Idioma:por
Publicado em: Universidade Federal do Rio Grande do Norte
Assuntos:
Endereço do item:https://repositorio.ufrn.br/jspui/handle/123456789/15903
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mechanical tests on specimens dried and sintered, performing a planning mixture and factorial experiment, using the response surface methodology. The ceramic bodies studied were prepared by dry process, characterized, placed in conformity by uniaxial pressing and sintered at temperatures of 940 º C, 1000ºC, 1060ºC, 1120°C and 1180°C using a fast-firing cycle. The crystalline phases formed during sintering at temperatures under study, revealed the presence of anorthite and wolastonite, and quartz-phase remaining. These phases were mainly responsible for the physical and mechanical properties of the sintered especimens. The results shown that as increases the participation of carbonate in the composition of ceramic bodies there is an increase of water absorption and a slight reduction in linear shrinkage for all sintering temperatures. As for the mechanical strength it was observed that it tended to decrease for sintering at temperatures between 940 ° C and 1060 ° C and to increase for sintering at temperatures above 1060 ° C occurring with greater intensity for compositions with higher content of calcite. The resistence decreased with increasing participation of quartz in all sintering temperatures. The decrease in grain size of calcite caused a slight increase in water absorption for formulation with the same concentration of carbonate, remaining virtually unchanged the results of linear shrinkage and mechanical strength. In conclusion, porous ceramic coating (BIII) can be obtained using high concentrations of calcite and keeping the properties required in technical standards and that the particle size of calcite can be used as tuning parameter for the properties of ceramic products.