Avaliação da produção de biodiesel de microalga Isochrysis galbana via transesterificação in situ

Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis,...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Procópio, Zaniel Souto Dantas
Altres autors: Chiavone Filho, Osvaldo
Format: Dissertação
Idioma:por
Publicat: Universidade Federal do Rio Grande do Norte
Matèries:
Accés en línia:https://repositorio.ufrn.br/jspui/handle/123456789/15855
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Sumari:Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis, and these species presents growth faster than land plants, enabling higher biomass yield. Thus, it is understood that the cultivation of these photosynthetic mechanisms is part of a relevant proposal, since, when compared to other oil producing raw materials, they have a significantly higher productivity, thus being a raw material able to complete the current demand by biodiesel . The overall aim of the thesis was to obtain biofuel via transesterification process of bio oil from the microalgae Isochrysis galbana. The specific objective was to estimate the use of a photobioreactor at the laboratory level, for the experiments of microalgae growth; evaluating the characteristics of biodiesel from microalgae produced by in situ transesterification process; studying a new route for disinfection of microalgae cultivation, through the use of the chemical agent sodium hypochlorite. The introduction of this new method allowed obtaining the kinetics of the photobioreactor for cultivation, besides getting the biomass needed for processing and analysis of experiments in obtaining biodiesel. The research showed acceptable results for the characteristics observed in the bio oil obtained, which fell within the standards of ANP Resolution No. 14, dated 11.5.2012 - 18.5.2012. Furthermore, it was demonstrated that the photobioreactor designed meet expectations about study culture growth and has contributed largely to the development of the chosen species of microalgae. Thus, it can be seen that the microalgae Isochrysis galbana showed a species with potential for biodiesel production