Degradação do fungicida tiofanato metílico pelo processo foto-Fenton em reatores anular e solar

Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of Univ...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Borges, Talitha de Andrade
Altres autors: Chiavone Filho, Osvaldo
Format: Dissertação
Idioma:por
Publicat: Universidade Federal do Rio Grande do Norte
Matèries:
Accés en línia:https://repositorio.ufrn.br/jspui/handle/123456789/15815
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Sumari:Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor