Análise gráfica de estruturas porosas sobre a ótica da estereologia

In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allo...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Moura, Egnilson Miranda de
अन्य लेखक: Gomes, Uilame Umbelino
स्वरूप: doctoralThesis
भाषा:por
प्रकाशित: Universidade Federal do Rio Grande do Norte
विषय:
ऑनलाइन पहुंच:https://repositorio.ufrn.br/jspui/handle/123456789/12786
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विवरण
सारांश:In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.